
Deep Probabilistic Models
Part II: Generative Adversarial Networks and Stochastic

Backpropagation

Robert Salomone

AMSI Winter School, 2021

Part II: Roadmap

Generative Adversarial Networks

Training when need not have a tractable likelihood (and using a loss with special properties)

Stochastic Backpropagation

Estimating the gradient of expectations.

A Trip to the GAN Zoo.

Discussion on GAN vs. Flows

GAN Training and Improving GAN Performance with Alternative Loss Functions

Wasserstein GAN
Least Squares GAN

GAN Extensions
Conditional GAN:
Adding Discrete Variables

The Gumbel-Softmax / Concrete Distribution

T (Z)

p(x | y)

2

Everybody loves GAN...

Why is this?
State-of-the-Art: GANs tend to make the best fake pictures (we will discuss why).
Ease of Use: Conceptually they are much simpler than directed or undirected graphical models which
came before.

Also, you don't need to learn about MCMC or Variational Inference to use them like other methods
There are many follow up papers along different themes:

We Fixed It! : GANs have some problems and everyone wants to solve them with new approaches.
We Proved Stuff : GANs are conceptually interesting, and can lead to interesting theory. .
We Can Use It: There are a number of possible applications, extensions to particular data types and
purposes.

3

Adversarial Networks and Loss Functions

For some target space , consider a neural network and let .

The generative form of the model for our data is , where and is some neural
network parametrized by , which we will call our generator.

Forgetting that the probability density (likelihood) may not be tractable for the moment - it is interesting to
note that need not be the same dimension as .

For non-trivial transforms , is still a random object.

X gθg
: Rm → X Z ∼ N (0, Im)

X = g(Z; θg) g : Rm → X

θg

Z X

gθg
X

4

Manifolds
The model implicitly assumes that whatever you are modelling is a bunch of normally distributed
independent, latent factors that have been pushed through a neural net.

Thus, if we could somehow train these models, we would also obtain a sort-of manifold learning algorithm in
reverse.

We would have that maps from latent space that is trained to be close to for the data (and if
it generalizes well, to the the population) to the manifold that the data lives on.

In a sense, it would implicitly identify some disentangled aspects of the data.

You can't invert in this case to obtain the latent representation (which maybe you really want to do), but
we will learn about machinery to do that later in the course.

gθg
N (0, Im)

gθ

5

Manifold Hypothesis

The manifold hypothesis posits that high-dimensional data lives around a low-dimensional manifold.

The above data could, in principle, be fit extremely well (but not perfectly!) by a model .

Actually, you will turn in principle to in reality in Tutorial 1. However, for now, we need to deal with the fact
that we don't have a likelihood!

gθg
: R2 → R

3

6

Returning to Training Issue

Issue: We don't know the likelihood for our model, so we can't train it via maximum likelihood. We need some
valid alternative loss function.

Solution: Adversarial Training

Goodfellow et al., (2014). Generative adversarial nets. NIPS' 2014.
However, the basic idea of adversarial training does predate the above paper.

7

https://papers.nips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf

Auxilliary Network

Auxilliary: make things more complicated and adds new stuff, but in a way that helps you achieve your goal /
solve your problems.

We will introduce an auxilliary neural network called the discriminator. Here, the parameter
comes from a set of potential parameters.

We don't really care about it on its own so much as we care about using it for our purposes.

The key to adversarial learning is to try to get the optimal that solves, for some value function ,

In words: we want the that minimizes the best possible performance of

This is a saddle point optimization problem.

The introduction of creates like an "artificial" likelihood for us to optimize.

d(⋅ ; θd) θd

Θd

θ⋆
g V

θ⋆
g = arg min

θg∈Θg

{max
θd∈Θd

V (θg, θd)}

gθg
dθd

d

8

Making it concrete...

Ok, so we know what does, but how do we make do something useful?

Answer: We can make a classifier of whether a sample is "real" and from the data-generating distribution,
or "fake" (i.e., with distribution given by).

It will output a value in .

θ⋆
g = arg min

θg∈Θg

{max
θd∈Θd

V (θg, θd)}

g d

d
gθ(Z)

(0, 1)

9

Derivation of Loss Function

Consider a random variable. The log-likelihood is if and if .
Recalling that outputs a value in , we can define

Recall that the discriminator wants to maximize the above function, while the generator wants to minimize it.

If we trained via gradient descent, this has the interpretation of both the generator and discriminator
learning by "playing a game against each other".

Note also that the first term is independent of the generator, so we may view it as minimizing two separate
loss functions (note the negative sign with as the discriminator wants to maximize):

Bernoulli(p) log(p) y = 1 log(1 − p) y = 0
d(⋅ ; θd) (0, 1)

V (θg, θd) =
n

∑
k=1

log d(xk; θd)


avg. log-likelihood for real samples (y=1)

+ Eg log(1 − d(X; θd))


avg. log-likelihood for fake samples (y=0)

1
n

L

Ld

Lg(θg) = Eg log(1 − d(X; θd))

Ld(θd) = − (
n

∑
k=1

log d(xk; θd) + Eg log(1 − d(X; θd)))
1
n

10

Expectations in our loss functions (!?)

Note that we want to minimize both

Ordinarily with neural networks, we use backpropagation to obtain the gradients, but we have the additional
issue of the expectation to deal with.

Now, we need to take (unbiased) expectations with respect to derivatives. This is called stochastic
backpropagation (or stochastic optimization depending on who you ask).

Lg(θg) = Eg log(1 − d(X; θd))

Ld(θd) = − (
n

∑
k=1

log d(xk; θd) + Eg log(1 − d(X; θd)))
1
n

11

Stochastic Backpropagation
The first technique is known by a number of names: e.g., Infinitesimal Perturbation Analysis, Pathwise
Differentiation, Reparametrization Gradient, Reparametrization Trick.

Suppose that can be represented as where crucially does not depend on . Then, for
some function of interest ,

From the right hand side above, we proceed, subject to mild regularity conditions, as

And so, we can unbiasedly estimate the gradient of if we just take the mean of the gradient of the loss for a
bunch of samples (very easy!).

The fact that such estimators typically have very low variance has started a revolution in ML since its
"discovery" in 2014. However, what no one seems to notice is that the stochastic simulation community has
been aware this since 1990! See the same paper linked above, but some measure theory is required!

X X = T (Z; θ) Z θ

L

∇θEpX(⋅ ; θ)[L(X)] = ∇θEpZ
L(T (Z; θ))

∇θEpZ
L(T (z; θ)) = ∇θ ∫ pZ(z)L(T (z; θ))dx = ∫ pZ(z)∇θ L(T (z; θ))dx = EpZ

∇θL(T (z; θ)).

L

12

https://www.iro.umontreal.ca/~lecuyer/myftp/papers/ipalr90.pdf
https://www.iro.umontreal.ca/~lecuyer/myftp/papers/ipalr90.pdf

Stochastic Backpropagation in the Non-Reparametrizable Case

Suppose that you can not reparametrize. This is usually the case with discrete variables.

This is also known by many names: e.g., Score Function Method and REINFORCE.

Using that , the above is

Key Takeaway: In the non-reparametrizable case, you need to tag on the score function of the non-
reparametrizable variables to your loss instead of taking its gradient.

Score function estimator variance is typically pretty high! It is often unusable without sophisticated variance
reduction techniques and many samples.

∇θEpX(⋅ ; θ)L(X) = ∇θ ∫ L(x)pX(x; θ)dx = ∫ L(x)∇θpX(x; θ)dx

= ∫ L(x) ∇θpX(x; θ)dx.
pX(x; θ)

pX(x; θ)

∇θ log pX(⋅ ; θ) =
∇θpX(⋅ ; θ)

pX(⋅ ; θ)

= ∫ L(x)pX(x; θ)∇θ log pX(x; θ)dx = EpX(⋅ ; θ)[L(X)∇θ log pX(X ; θ)].

13

torch.distributions

Pytorch has a built-in distributions module that supports stochastic backpropagation with automatic
reparametrization.

There are lots of distributions there, and it is extended (along with ability to use stochastic backpropagation)
by the pyro.distributions module which you saw in the section on flow-based model.

Using the rsample method on a distribution object instructs PyTorch to use reparametrization gradients
(lower variance!)

14

Simple Example

The code below tries to solve the problem of finding

dist = torch.distributions.Normal(loc=0., scale=1.) # create N(mu,1) RV
dist.loc.requires_grad_(True) # tells PyTorch we will want the gradient of dist.loc

adam = torch.optim.Adam([dist.loc]) # create an Adam optimizer object

for i in range(10000):
 X = dist.rsample() # sample in a manner that yields reparametrization gradients
 loss = torch.mean(torch.abs((X - 3))) # estimate the expected loss E[|X-3|]
 loss.backward() # stochastic backpropagation
 adam.step() # perform gradient descent
 adam.zero_grad() # zero out all the gradients

μ⋆ = arg min
μ∈R

{E|X − 3|}, X ∼ N (μ, 1)

15

Example

16

Returning to GANs

Fortunately for us, GANs are by construction already in reparametrized form as ! So, the
gradient operator passes under the expectations and we obtain

Stochastic backprop is very important and we will use it in Parts III and IV.

Time permitting, I will show you a cheat that lets us reparametrize discrete variables using a distribution that
is a continuous relaxation.

X = g(Z ; θg)

∇θg
Lg(θg) = Eg∇θg

log(1 − d(g(Z; θg); θd))

∇θd
Ld(θg) = − (

n

∑
k=1

∇θd
log d(xk; θd) − Eg∇θd

log(1 − d(g(Z; θg); θd)))
1
n

17

The training procedure is illustrated on the right.

Objects that are random are circled.

Objects written in purple are those being
optimized.

Red denotes the fake data, blue denotes the real
data.

Note that for backpropagation to occur, we need
to go back through the random element ,
hence stochastic backpropagation is required.

GAN Training Graph

X

18

Minimalistic GAN Implementation

Making a minimalistic GAN implementation in PyTorch (I call it miniGAN!) takes less than 50 lines of code!
Class-Based Implementation, with two methods: (i) Initialization (Constructor), (ii) Training

import torch as t
import torch.nn as nn

class miniGAN():
 def __init__(self, data, dimZ, n_hidden=25):
 dimX, self.dimZ = data.shape[1], dimZ
 self.data = t.tensor(data, dtype=t.float)

 # create a generator net for the GAN
 self.g = nn.Sequential(nn.Linear(dimZ, n_hidden), nn.ReLU(),
 nn.Linear(n_hidden, n_hidden), nn.ReLU(),
 nn.Linear(n_hidden,dimX))

 # create a discriminator net for the GAN
 self.d = nn.Sequential(nn.Linear(dimX, n_hidden), nn.ReLU(),
 nn.Linear(n_hidden, n_hidden), nn.ReLU(),
 nn.Linear(n_hidden,1))

19

Training Procedure

 def train_GAN(self, n_steps, n_samples = 128, d_steps=1):
 self.opt_g = torch.optim.Adam(self.g.parameters(), lr=1e-4) # optimizer for g
 self.opt_d = torch.optim.Adam(self.d.parameters(), lr=2e-4) # optimizer for L

 for i in range(n_steps):
 for j in range(d_steps): # discriminator training
 self.opt_d.zero_grad() # clear accumulated gradients
 Z = t.randn(n_samples, self.dimZ) # draw Z ~ N(0,I)
 X = self.g(Z) # transform via the GAN's generator

 # L_d
 d_loss = -(t.mean(t.log(self.d(data))) + t.mean(t.log(1 - self.d(X))))
 d_loss.backward() # backprop to accumulate gradients
 self.opt_d.step() # take gradient descent step for theta_g

 self.opt_g.zero_grad() # clear accumulated gradients
 Z = t.randn(n_samples, self.dimZ)
 X = self.g(Z) # generate sample
 g_loss = t.mean(t.log(1-self.d(X))) # L_g
 g_loss.backward()
 self.opt_g.step()

20

Result: GAN Trained on 2D Iris Data

21

Result: Kernel Density Estimate of gθg
(Z)

22

Convergence

23

Key Takeaway

GANs are not good at "learning the distribution that created the data", but they are good at making samples
that are "indistinguishable" from those from that distribution.

This should not be surprising, as that is how they are designed.

This can be either an incredible benefit, or a major drawback depending on one's goal.

We will revisit this point again a little later.

24

A Journey in Latent Space

For a fit GAN model, one can take a walk in latent space (i.e., -space) by following a line/curve between two
points, and looking at the (deterministic) path of generated observations in -space).

Varying along only one of the learned independent components e.g., will visualise the effect of that
independent component.

Z
X

Zk

Figure from the original GAN paper.

25

A Quote...

"One unusual capability of the GAN training procedure is that it can fit probability distributions that assign
zero probability to the training points. Rather than maximizing the log-probability of specific points, the
generator net learns to trace out a manifold whose points resemble training points in some way.

Somewhat paradoxically, this means that the model may assign a log-likelihood of negative infinity to the test
set, while still representing a manifold that a human observer judges to capture the essence of the
generation task."

From Deep Learning by Goodfellow et al. (2015).

26

https://www.deeplearningbook.org/

Do GANs optimize some divergence measure?

In light of GAN training result in fits that behave very different from the behaviour we get from
flows, it begs the question of whether GANs are fitting some divergence measure implicitly.

Thus, it is interesting to look at what the GAN objective is doing probabilistically in an idealized scenario.

KL(p||q)

27

What is with the GAN objective?

The GAN training procedure is optimizing something, after all, we do have an objective function.

One can obtain a little bit of encouragement by noting that if one had the optimal discriminator (i.e., out of all
possible functions), then GAN training would actually be trying to minimize

which is proportional to the Jensen-Shannon Divergence between and .

Actually, the proof is (in my opinion), quite neat and for those interested, can be found in the original paper.

So, the loss function above is the same as saying "minimize JSD".

This helps one sleep better at night (maybe) knowing that GANs are not just some weird thing with two
neural networks fighting each other.

C(g) = max
d

V (g, d) = KL(pdata
∣∣∣
∣∣∣) + KL(pg

∣∣∣
∣∣∣)

pdata + pg

2

pdata + pg

2

pdata pg

28

MLE Revisited

Recall that MLE is related to minimizing

Recall also that it has a large penalty when but is close to zero.

KL divergence explodes if where .
This encourages finding a that assigns probability mass where has it.

However, if is close to zero in an area, the value of has very little effect.

The interpretation is that MLE is not penalized for generating out-of-distribution (i.e., "fake-looking")
samples.
This explains why models trained with GAN loss tend to produce more "plausible" images than those
trained with MLE.

However, using the GAN has it's own issues....

KL(pdata||pmodel) = Epdata [log] .
pdata(x)

pmodel(x)

pdata > 0 pmodel

pmodel(x) → 0 pdata(x) > 0
pmodel pdata

pdata(x) pmodel(x)

29

GAN: The Downsides

Mode Collapse

The Generator learns only a mode of the target distribution.
Underlying Issue: GAN training encourages the generator to find an output that seems plausible to the
discriminator. This can be a very special subset of the possible space.

Convergence: Training is not guaranteed to converge under any practical settings.

Vanishing Gradients

Recall the issue with the function and vanishing gradients.

Validation: The learned distribution is implicit, i.e., we do not actually know .
Model validation is difficult, we can't look at the (log)-likelihood of a test set of data to assess fit.
We also know it won't necessarily work well there anyways.

sigmoid

pX

30

Mode Collapse

31

Adversarial Training produces good quality
samples in terms of being plausible.

Of course, efforts have been made to improve
upon the downsides of the original GAN...

But, this person also does not exist!

32

Addressing the Downsides

33

NSGAN: Non-Saturating (Loss) GAN

When is different to , training is unstable, because the term below will have small gradient signal,

We can interpret the above as penalising the generator for making samples that the discriminator considers
fake.

Loss minimization with the above is equivalent to the task "minimize the probability that the discriminator
thinks generated samples are fake".

However, the non-saturating GAN uses instead

which encourages the generator to make samples that the discriminator considers real.

Loss minimization with the above is equivalent to the task "maximize the probability that the discriminator thinks
generated samples are real".

Fixes gradient issues but says goodbye to the nice Jensen-Shannon Divergence result. Fortunately, there is a
quite recent paper that investigates NS-GAN as divergence minimization.

pg pdata

LGAN
g (θg) = Eg log(1 − d(X; θd)).

LNS GAN
g = −Eg log d(X; θd),

34

https://arxiv.org/pdf/2010.08029.pdf

NS-GAN and Friends

Actually, NS-GAN was in the original GAN paper, but there have been so many new GANs since...

35

DCGAN
Wasserstein GAN
Improved WGAN
Relaxed WGAN
Least Squares GAN
Cramer GAN
Energy Based GAN
Margin Adaptation GAN
MAGAN
PresGAN
TP-GAN
Bayesian GAN

DiscoGAN
DualGAN
CycleGAN
StarGAN
MoCoGAN
SAGAN
FlowGAN
BigGAN
SeqGAN
RankGAN
AnoGAN

A GAN for All Seasons

Many types of GANs:

⋮

36

DCGAN
Wasserstein GAN
Improved WGAN
Relaxed WGAN
Least Squares GAN
Cramer GAN
Energy Based GAN
Margin Adaptation GAN
MAGAN
PresGAN
TP-GAN
Bayesian GAN

DiscoGAN
DualGAN
CycleGAN
StarGAN
MoCoGAN
SAGAN
FlowGAN
BigGAN
SeqGAN
RankGAN
AnoGAN

A GAN for All Seasons

We will look at a few...

⋮

37

A Trip to the (GAN) Zoo

The GAN Zoo is a nice compendum of papers (though it is only current to late 2018!).

38

https://github.com/hindupuravinash/the-gan-zoo

Flow-GAN
Grover et al., (2018), Flow-GAN: Combining Maximum Likelihood and Adversarial Learning in Generative
Models, AAAI 2018.

Idea is simple: Make a normalizing flow.

Then, you have a tractable likelihood but you can pretend you don't and just train using adversarial
methods.
Compare results using adversarial loss and maximum likelihood for the same class of models.

The result...

"When trained adversarially, Flow-GANs generate high-quality samples
but attain extremely poor log-likelihood
scores, inferior
even to a mixture model memorizing the training data; the opposite
is true when trained by
maximum likelihood." - Grover et al., 2018

g(⋅ ; θg)

39

https://arxiv.org/pdf/1705.08868.pdf

Combining Adversarial and Log-Likelihood Loss

If you want you can be really fancy and make a loss that interpolates between MLE and GAN Loss with a
parameter :

Above, is pure GAN objective, and is pure (negative) log-likelihood objective. Any is
some interpolation between the two.

λ ∈ R+

V (gθg , dθd) = V (g, d) − λEpdata [log pg(X ; θ)]

λ = 0 λ → ∞ λ ∈ (0, ∞)

40

Wasserstein GAN (Arjovsky et al., 2017)

41

https://arxiv.org/pdf/1701.07875.pdf

Wasserstein GAN

The linked paper has beautiful theory (and >7000 citations!), but methodologically can be summarized as:
Change the loss function so that you minimize Wasserstein distance instead of Jensen-Shannon Divergence.

Before we had,

Wasserstein GAN replaces the discriminator function with a critic function and aims to minimize

where is the set of (scalar valued) 1-Lipschitz functions (we will define what that means shortly).

Interesting (to me at least), the above is not the definition of the Wasserstein Distance, but is equivalent to it
by Kantorovich-Rubinstein Duality (the proof requires some analytical techniques).

C(g) = max
d

V (g, d) = KL(pdata
∣∣∣
∣∣∣) + KL(pg

∣∣∣
∣∣∣)

pdata + pg

2

pdata + pg

2

d f

C(g) = W(pdata, pg) = sup
f∈F

{Epdataf(X) − Epgf(X)}

F

42

https://en.wikipedia.org/wiki/Wasserstein_metric
https://courses.cs.washington.edu/courses/cse599i/20au/resources/L12_duality.pdf

Lipschitz Functions

That is, functions that satisfy, for all ,

for . More generally, any function satisfying the above for some other is called -Lipschitz.

We approximate with a very flexible class of Lipschitz functions (Lipschitz neural net).

Note that the value function is an Integral Probability Metric:

Thus, other function classes may be used.

For example, we can obtain explicit solutions for the suprememum over when that class of functions is
the unit ball in a Reproducing Kernel Hilbert Space (see e.g., SteinGAN or MMDGan).

f x1, x2

|f(x1) − f(x2)| ≤ K||x1 − x2||.

K = 1 K > 0 K

F

W(pdata, pg) = sup
f∈F

{Epdataf(X) − Epgf(X)}

F

43

https://arxiv.org/pdf/1707.06626.pdf
https://arxiv.org/pdf/1705.08584.pdf

Wasserstein GAN (Arjovsky et al., 2017)

The value function becomes

There (now) exist a number of neural networks that enforce Lipschitz constraints, but a simple way is to simply
"clip" the parameters to lie in a fixed range . You just do this after each gradient step.

Depending on , the net has a different Lipschitz constant, however if the Lipschitz constant is not one, one
obtains something simply proportional to the Wasserstein distance so everything is OK!

Of course...

Weight clipping is a clearly terrible way to enforce a Lipschitz constraint. - Arjovsky et al., 2017 (WGAN Paper)

But then again...

"In no experiment did we see evidence of mode collapse for the WGAN algorithm." - Arjovsky et al., 2017
(WGAN Paper)

V (θg, θf) = sup
f∈F

{Epdataf(X) − Epgf(X)}

[−c, c]

c

44

WGAN Implementation
for i in range(n_steps):
 for j in range(d_steps):
 self.opt_d.zero_grad()
 Z = t.randn(n_samples, self.dimZ)
 X = self.g(Z)
 d_loss = -(t.mean(self.d(self.data)) - t.mean(self.d(X)))

 d_loss.backward()

 self.opt_d.step()

 for p in self.d.parameters
 p.data.clamp_(-0.01, 0.01)

 self.opt_g.zero_grad()
 X = self.g(t.randn(n_samples, self.dimZ))
 g_loss = -t.mean(self.d(X))

 g_loss.backward()
 self.opt_g.step()

45

WGAN Result

46

WGAN Result: Density Estimate

47

Least Squares GAN

48

Least Squares GAN (LS-GAN)

Proposed in the paper:

Mao et al., (2017), Least Squares Generative Adversarial networks, Proceedings of the IEEE International
Conference on Computer Vision (ICCV), 2017, pp. 2794-2802.

Idea is again simple: use a least squares loss.

In the above

 is the discriminator's target for fake data
 is the discriminator's target for real data
 is the value the generator is trying to make the discriminator assign to its data.

Motivation: Gradients vanish when fake samples that are "bad" are still considered plausible by the
discriminator. They should get a bigger penalty.

Lg(θg) = Epdata
[(d(X) − b)2] + Epg[(d(X) − a)2]

Ld(θd) = Epg[(d(X) − c)2]

a
b
c

49

https://openaccess.thecvf.com/content_ICCV_2017/papers/Mao_Least_Squares_Generative_ICCV_2017_paper.pdf

LS-GAN: How good is it?

Provided and , minimizing the aforementioned losses is equivalent to minimizing the
specific Pearson -Divergence

where

One choice of satisfying the conditions to obtain the divergence is

Another option (that has no known divergence) is to just use binary labels (1 for real, 0 for fake, generator
wants the discriminator to think it is generating samples with value 1). This is what the authors used in their
experiments.

b − c = 1 b − a = 2
χ2

χ2 (∣∣∣
∣∣∣ pg)

pd + pg

2

χ2(p||q) = Eq [(− 1)
2

] = Varq [] .
p(X)

q(X)

p(X)

q(X)

a, b, c χ2

Lg(θg) = Epdata[(d(X) − 1)2] + Epg[(d(X) + 1)2]

Ld(θd) = Epg[(d(X))2]

50

LS-GAN Implementation

The implementation of LS-GAN is actually very simple, arguably simpler.

 def train_GAN(self, n_steps, n_samples = 128, d_steps=1):

 self.opt_g = torch.optim.Adam(self.g.parameters(), lr=1e-4)
 self.opt_d = torch.optim.Adam(self.d.parameters(), lr=2e-4)

 for i in range(n_steps):
 for j in range(d_steps):
 self.opt_d.zero_grad()
 X = self.generate_samples(n_samples)
 d_loss = (t.mean((self.d(self.data)-1)**2) + t.mean((self.d(X))**2))/2
 d_loss.backward()
 self.opt_d.step()

 self.opt_g.zero_grad()
 X = self.generate_samples(n_samples)
 g_loss = t.mean((self.d(X)-1)**2)/2
 g_loss.backward()
 self.opt_g.step()

51

LSGAN Result

52

LSGAN Result: Density Estimate

53

Convergence

54

LSGAN
Authors argue that LS-GAN training is more stable, produces better quality samples (images), and that LS-GAN
seems more robust to mode collapse.

You will get to play around testing some GANs on a similar example in the first tutorial!

I have made a class for you which has three GAN implementations in one. :)

55

OK, enough with the alternate loss functions, lets try to accomplish
something a little different...

56

Conditional GAN (CGAN)

57

Conditional GAN (Mizra & Osindero, 2014)

Learns a conditional distribution :

The conditioning variable can be any kind of information, e.g., class labels or continuous data.

Often, is referred to as the context variable.

Simply feed to both generator and discriminator (additional input).

Same principle applies for other loss functions (e.g., W-CGAN, LS-CGAN).
In principle you can make a joint model over the "context" by first fitting the marginal , and then
via CGAN.

Can also train jointly if you desire.

p(x|y)

y

y

y

LCGAN
g (θg) = Eg log(1 − d(X, Y ; θd))

LCGAN
d

(θg) = − (
n

∑
k=1

log d(xk, yk; θd) − Eg log(1 − d(g(Z, Y), Y ; θd)))
1
n

p(y) p(x|y)

58

https://arxiv.org/pdf/1411.1784.pdf

Conditional GAN is a straightforward extension,
one just needs to add extra inputs to and and
feed both the data.

Conditional GAN

d g

59

Key Takeaway

GANs are not good at "learning the distribution that created the data", but they are good at making samples
that are "indistinguishable" from those from that distribution.

This should not be surprising, as that is how they are designed.

60

Recommended Survey Articles

An early tutorial summary that discusses GAN as well as other generative models you will see / have seen in
this course:

Goodfellow, I. (2016). NIPS 2016 tutorial: Generative adversarial networks.

Simple to read survey giving some recent developments (and overviews ways of assessing performance)

Pan, Z., Yu, W., Yi, X., Khan, A., Yuan, F., & Zheng, Y. (2019). Recent progress on generative adversarial
networks (GANs): A survey. IEEE Access, 7, 36322-36333.

A comparison study that makes one wonder (somewhat) about all the GAN variants...

Lucic, M., Kurach, K., Michalski, M., Gelly, S., & Bousquet, O. (2018). Are GANS created equal? a large-
scale study. Advances in Neural Information Processing Systems 31 (NeurIPS 2018)

61

https://arxiv.org/pdf/1701.00160.pdf
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8667290
https://papers.nips.cc/paper/2018/file/e46de7e1bcaaced9a54f1e9d0d2f800d-Paper.pdf

Bonus: Reparametrization of Categorical Variables (approximately)

62

Bonus: Reparametrization of Categorical Variables (approximately)

Suppose that we wish our GAN to output values from a categorical distribution.

As a toy example, consider the following generative model for a dependent Bernoulli vector.

Problem here is that stochastic backpropagation requires the score function estimator as discrete variables
are not reparametrizable in a useful way.

Later we will see that we can train such models using Variational Learning to deal with the intractable
likelihood, but for now we do not want to use the score function method for stochastic backpropagation
(remember it performs very poorly).

Z ∼ N(0, I)

η = sigmoid(g(Z; θg))

Xk|Z ∼ind Bernoulli(ηk), k = 1, … , d. .

63

64

Categorical Variables

Introducing the softmax distribution

Note that the above is simply an (unconstrained) reparametrization of the multinomial distribution.

Softmax has instead of the multinomial's , where is the set of such that
elementwise and .

It is still of course a discrete distribution. We wish to have reparametrization gradients but this is not possible.

psoftmax(k ; w1, … ,wK) = , k = 1, … ,K
exp(wk)

∑K

k=1 exp(wk)

w ∈ R
K p ∈ S

K
S
K p p ≥ 0

∑
k
pk = 1

65

The Gumbel-Softmax aka Concrete Distribution

Let's do something just a little "dodgy" that will allow us to obtain reparametrization gradients through
categorical distributions.

It is possible to create a continuous relaxation of the aforementioned discrete distributions so we can obtain
reparametrization gradients.

Two names because it was independently proposed by (at the same conference in the same year, no less)

E. Jang, S. Gu, and B. Poole. Categorical Reparameterization with Gumbel-Softmax (2017), ICLR 2017.

C. J. Maddison, A. Mnih, and Y. W. Teh. The Concrete Distribution: A Continuous Relaxation of Discrete
Random Variables (2017), ICLR 2017.

Parameters are . Simulation is obtained by draw and return

In the limit that , samples match those from an associated softmax (multinomial) distribution.

α1, … ,αK ∈ R+ G ∼ Gumbel

Xk =
exp(λ−1 ⋅ (log ak + Gk))

∑n

j=1 exp(λ−1 ⋅ (logαj + Gi))

λ → 0

66

https://arxiv.org/pdf/1611.01144.pdf
http://www.stats.ox.ac.uk/~cmaddis/pubs/concrete.pdf

Gumbel-Softmax Distribution in PyTorch

The module torch.distributions has it implemented as RelaxedBernoulli and
RelaxedOneHotCategorical

import torch

p = torch.tensor([0.5])
distX = torch.distributions.RelaxedBernoulli(probs = p, temperature = 1)
X = distX.rsample()

67

