
Deep Probabilistic Models
Part III: Graphical Models, Deep Latent Variables, and

Variational Learning

Robert Salomone

AMSI Winter School 2021

2

Roadmap
The second half of this course will focus on (Stochastic Gradient) Variational Learning.

It seems noone can distinguish between the terminology Variational Approximations, Variational Bayes,
Variational Inference, and Variational Learning.

However, I use the term Variational Learning as we will be training models with gradient descent (Learning)
while simultaneously approximating some posterior distributions (Variational Bayes/Inference).

This is a very general framework which encompasses many techniques.

Know however that sometimes the terms are used in different ways. We will use the terminology as
follows

We need the general framework so we can make sense of Variational Autoencoders.

However, this way of viewing things in general can be incredibly useful, and will draw connections with
many things you may or may not have seen before (e.g., EM algorithm)!

Variational Learning ⊃ Variational Inference/Bayes.

3

Everybody loves VAEs...

4

People also love Amortized Inference in Deep Latent Variable Models....

This paper essentially proposed the exact same ideas in the same year!

As the Variational Autoencoder is generally the Deep Latent Variable Model of interest, and only a special
case of the framework presented in the paper above, fame has favored the former paper.

5

So, what is a VAE?
Despite their popularity, people often have trouble really "getting" what is really happening with VAEs.

Trying to explain them without having a lot of the required background is almost impossible.

You end up with something that sounds like a bunch of terms mashed up into an abstract...

"VAEs are a deep generative model, that resembles an autoencoder, but it is Bayesian. The posterior inference is
intractable......neural network overcomes the problem.....manifold learning.....latent space.....encode-decode independent
features using variational approximations...disentanglement...second neural net."

This is a shame, because the idea is, in my opinion, quite neat.
I'm going to take a very structured approach to build up so understanding VAEs (and extensions) is easy.

6

Roadmap

To really get what is going on with VAEs and why they are called that requires an understanding of several
concepts...

Directed Graphical Models and Latent Variable Models
Bayes Rule (in the context of Directed Graphical Models)
Stochastic Backpropagation
Variational Learning
Amortized Variational Inference

If we can understand all of the above, Variational Autoencoders are trivial to understand.

So, we will take things slowly, and build it up. Along the way, you will learn several things that are very useful
in their own right (indeed, for some, you have already!).

They will also help you understand probabalistic programming, which we will need to implement the VAE.

The above is the focus of the second part of this course.

7

A Brief Mention: Undirected Graphical Models

This course would not be complete without at least a very brief mention of undirected graphical models

Examples include: Auto-Logit Model (Statistics), Ising Spin-Glass Model (Physics), and Boltzmann Machine
(Machine Learning). Actually, those three things are the exact same model (!).

Another example is the Exponential Random Graph Model.

More generally, the above are examples of something called an energy-based model.

In the context of performing Bayesian inference on , a lot of these models are what is called doubly
intractable, as the normalizing constant of the distribution is unknown.

Such models are very interesting, but moving forward we are going to restrict ourselves to the directed
graphical (acyclic) graphical model framework.

The latter is the dominant area of interest in probabilistic machine learning (at least for now!).

θ

8

Bayes beyond .θ

9

Bayes Rule: Not just for parameters!

We will shortly see that being "Bayesian" about one's parameters has simply one example of introducing an
additional latent variable in a directed graphical model.

10

Everything is a graphical model!

At this winter school, you have been introduced to Bayesian Statistics.

The above is often referred to a the posterior, but I want you to think of it as only a posterior.

Posterior inference in Bayesian statistics is just a special case of posterior inference in a directed graphical
model.

A directed graphical model (sometimes called a Bayesian Network) is a collection of random objects whose
joint distribution is specified in a generative manner through a directed acyclic graph.

p(θ|y) ∝ p(θ)p(y|θ)

11

Here is a graphical model of the prior predictive
distribution in the Bayesian statistics setting:

This is a model of our belief before we observe
anything.

The graph on the right tells us how to simulate
from the distribution, or rather, the way we have
specified our joint distribution...

Directed Graphical Models

θ ∼ p(θ)

Y |θ ∼ p(y|θ)

p(θ,y) = p(θ)p(y|θ)

12

We represent that we have observed the node
by colouring it in.

Thus, the model on the right represents the
distribution of having already observed .

Note that in all this, is a latent variable in our
model, whose purpose is to model of our own
uncertainty regarding the parameter of the data
generating process.

Once we have observed a variable (or variables),
we have the posterior distribution over the latent
(or hidden) variable, via Bayes rule.

Conditioning

y

θ y

θ

p(θ|y) ∝ p(θ)p(y|θ)

13

More Generally...

More generally, we can have a graphical model with variables that are observed, as well as latent (also called
unobserved, or hidden).

Henceforth, we will denote our latent variables as .

Note the connection with how we have used the notation thus far, that is not entirely coincidental.

Via a simple application of Bayes' Rule, we may write

where is the (marginal) likelihood of .

Go from Bayesian Statistics to Bayesian Machine Learning in one easy step! Write instead of !
(That was a joke, but contains a grain of truth!)

Z

Z

p(z|x) =
p(z)p(x|z)

p(x)

p(x) = ∫ p(x|z)p(z)dz x

Z θ

14

Why have latent variables?

15

Mixed Models: Latent Variables for Modelling Dependence

An example of a model with latent variables you may have seen before is is a Linear Mixed Model. It is a
simple, yet powerful model of dependent data.

Above, is a latent vector, , is the design matrix (includes the data and
possibly a column of ones).

Then, is a second design matrix that includes information about how the data are related (which
observations share certain elements of to model their dependent.

Classic Example: Panel (Longitudinal) Data. Each individual has their own latent variable.

Alternatively it may be modelling at the group/item levels.

Y = Xβ + VZ + ϵ.

Z ∼ N (0, ΣZ) ϵ ∼ N (0,σ2I) X

V
Z

16

In generative form: Model of some unobserved latent process, for
which we have noisy observations.

Here, we may care about - for example in
tracking problems.

State Space Model: latent variables modelling physical phenomena

Consider the famous (univariate) state space model.

Z1 ∼ pZ1

Zt|Zt−1 ∼ pZt|Zt−1
, t = 2, … ,n.

Yt|Zt ∼ pYt|Xt
, t = 1, … ,n.

p(z,y) =
n

∏
k=1

p(zk|zk−1)p(yk|zk)

p(z|y)

17

Why did I just show you that?

I showed you that particular example as it is example of a graphical model where we want to be Bayesian
about a latent variable that isn't , but has an important role in the underlying model!

In Bayesian statistics, is simply a latent (unobserved) variable which is treated with particular importance.
That is, the end goal is obtaining .

More generally, we may have (other) latent variables in our graphical model.

Sometimes, we may not even care about so much as achieving other things (e.g., inferring something
about latents).

I have neglected Discrete variables in the very flexible models I have been showing you in this course
thus far, so we will focus on them for a bit!

θ

θ
p(θ|y)

θ

18

Consider the following generative process:

Here, we have used a latent variable as a flexible
modelling tool to create a dependent Bernoulli
model.

A Simple Latent Variable Model

Z ∼ N (0, 1)

X1|Z ∼ Bernoulli(sigmoid(a1 + b1Z))

X2|Z ∼ Bernoulli(sigmoid(a2 + b2Z))

19

Being Lazy: Plate Notation

Plate notation is commonly used in probabalistic machine learning (and statistics) to ease representing the
graphs by putting repeated variables in a "plate":

We just need to add one more

1. Arrows outline the order in which variables are generated (how the distribution factorizes).
2. Random Variables are denoted inside circles
3. Fixed stuff don't have circles.
4. Colored-in variables represent those that are observed, ones with white backgrounds correspond to

latent variables.
5. Anything inside a box is conditionally independent of everything outside it.

(Extended Tutorial Video on Plate Notation)

20

https://www.coursera.org/lecture/probabilistic-graphical-models/plate-models-IdXt6

Our latent variable will be of dimension
.

Then, for one sample, we generate

Above, may come from any -parametrized
class of functions (neural net!).

Example: Deep Bernoulli Model

We can make our model deeper by using multiple layers of latent variables...
Z

m

Z ∼ N (μ, Σ)

p = gξ(Z), gξ : Rm → (0, 1)d

Xi |p ∼ind Bernoulli(pi), i = 1, … , d.

gξ ξ

21

22

Again, let be a function (neural network!) with
parameters .

If we would like additional flexibility, we can add
another "layer" of latent variables.

Suppose we have observations from the
following model...

Doubly Deep Bernoulli Model: State of the art!

gξ
ξ

N

Z1 ∼ N (μ1, Σ1)

μ2(Z1) = gξ1
(Z1), gξ1

: Rdim(Z1) → R
dim(Z2)

Z2 ∼ N (μ2(Z1), Σ2)

p = gξ2
(Z2), gξ2

: Rdim(Z2) → (0, 1)d

Xi |p ∼ind Bernoulli(pi), i = 1, … , d.

23

Deep Probabalistic Modelling

Methods such as the last few models are the essence of deep probabalistic modelling.

We can be deep with our use of neural networks (themselves deep).
The latent variables can be deep.

All this deepness should serve a purpose: e.g., flexible models.

Training the models and inference is then difficult, but we will learn to deal with that.

24

Takeaways

Being "Bayesian" about is really just adding a latent variable to a graphical model that is put there to model
your epistemic uncertainty.

Of course, this can be very important to get inferences about for scientific purposes.

Including as a latent in a model and specifying a prior also acts as regularization.

More generally, we may not care about so much, so we can be Bayesian but not for .

Example: If we have say but parametrizes for example a deep generative model, it introduces
many headaches to deal with the high dimensional posteriors over which we may not be that interested
in.

Latent Variables:

Sometimes the latents model data structure (think Mixed Models)
Sometimes the posteriors have some desirable interpretation (think State Space Models) and so
posterior inference is important.
Sometimes the latents are a convenient way to make your model more flexible (think the Doubly Deep
Bernoulli model).

θ

θ

θ

θ θ

z ∈ R
50 θ

θ

z|x

25

Likelihood

Note that we are not being Bayesian about (all those parameters, e.g., , etc.). If we were, we could just
MCMC over .

Assume we wish to train via maximum likelihood. As we do not observe , we are interested in the marginal
likelihood for this model is.

We could try to use stochastic backpropagation, but in general that can't be trusted to work well. Also, that
would not give us any information about (which, generally, we may care about).

That seems like a for "Fully" Bayes!

However, in general, if the latent variables are low-dimensional and the parameters are high dimensional (as
they will be very soon), you want to avoid having lots more latent variables that may make inference hard over
certain ones we care about.

So, we may need to be semi-Bayesian going forward. To do so, I will now introduce a general framework.

θ ξ, Σ
(θ,Z)

Z

pθ(x) = ∫ pθ(x|z)pθ(z)dz

Z|X

+1

26

Maximum (Marginal) Likelihood with Latent Variables: The General
Framework

In light of the previous discussion, and with apologies to the Reverend Thomas Bayes, we shall assume the
following:

Any parameters that one wishes to treat in a Bayesian matter are simply additional latent variables
contained in that shall hereafter be afforded no privileged position.

There will also be parameters that we wish to optimize via maximum likelihood, those parameters are what we
henceforth refer to as .

Let be the joint distribution over the observed variables and the latent variables with parameter
. We seek

From this, we will be interested in posteriors of the form .

Z

θ

pθ(x, z) x z

θ

θ⋆ = arg max
θ∈Θ

{ log pθ(x) = log ∫ pθ(x|z)p(z)dz}.

p(z|x ; θ⋆)

27

Example

The previous framework is very general, and it actually includes an interesting class of techniques called
empirical Bayes.

Empirical Bayes can be considered as being "semi-Bayesian": you have a posterior over your parameters
but you choose some of your prior hyperparameters via optimizing the marginal likelihood.

The above sounds a bit dodgy (heretical), but is used all the time in Bayesian model selection.

It is also a standard approach for choosing kernel bandwith in Gaussian Processes.

In some cases, the resulting estimators can have very good theoretical frequentist properties.

Our framework is more general however, we can optimize over any parameters we see fit, not just "prior"
parameters.

Sometimes you want to be Bayesian about latent variables in a model, but not necessarily about the
parameter .

θ
η

θ

28

How Bayesian are you?

Excerpt from Machine Learning: A Probabalistic Perspective by Kevin Murphy (2012)

29

Variational Learning
In a nutshell, sampling is hard and expensive in high dimensions, so we will replace it by optimization.

Instead of sampling posterior distributions, we just optimize to get some member of an approximating family
that is "close" in some sense so we can optimize our parameters while dealing with those pesky latents!

30

Auxilliary Distribution

Key trick, introduce some auxilliary family of distributions with variational parameter vector that we
will use to approximate . To remind ourself of this fact, we shall use the notation .

We will write,

Then, for any , it can be shown that , with equality is achieved iff .

The "closer" is to in (reverse) KL divergence, the tighter the bound will be.

Thus, we use as our loss function, and if approximates well, we will approximately
maximize the likelihood.

There is actually a connection to the EM algorithm here, see the excellent slides by Zoubin Gharamani for
further discussion.

qϕ(z) ϕ

p(z|x) qϕ(z|x)

L(θ,ϕ) = Eqϕ [log pθ(x,Z) − log qϕ(Z|x)]

q L(θ,ϕ) ≤ pθ(x) qϕ(z |x) ≡ pθ(z|x)

qϕ(z|x) p(z|x)

L qϕ(z|x) pθ(z |x)

31

https://www.cs.cmu.edu/~tom/10-702/Zoubin-702.pdf

The Reduced Case: , i.e., "Fully Bayesian"

If one does not choose to optimize over any parameters and have everything in the model be latent --- i.e.,
we are being "fully Bayesian" over all parameter:

Thus, in the reduced case, minimizing the negative ELBO is equivalent to minimizing .

θ = {}

ϕ

arg max
ϕ,θ

Eqϕ [log pθ(x,Z) − log qϕ(Z)] = arg max
ϕ

Eqϕ [log p(x,Z) − log qϕ(Z)]

= Eqϕ

= arg min
ϕ

KL(qϕ||p)

log p(x,Z)

log qϕ(Z)

KL(qϕ||p)

32

Backward KL: How good is it?

Figure also from Kevin Murphy's very excellent book (new version available free!)

33

https://probml.github.io/pml-book/book1.html

Stochastic Backpropagation, the Return

So, we are interested in solving which is the solution the optimization program

The solution to all of lifes problems: Gradient Descent ...

As we saw in the lecture on GANs, we have the technology we need to estimate the above gradients with low-
variance.

It is in our interests to use a family for that is reparametrizable for variance reasons.

θ⋆,ϕ⋆

arg max
ϕ,θ

Eqϕ [log pθ(x,Z) − log qϕ(Z)]

∇θ,ϕ Eqϕ [log pθ(x,Z) − log qϕ(Z)]

qϕ

34

Choosing a Family for

Desiderata
Flexibility
Reparametrizability
Ease of Optimization
Inductive Bias
Parsimony

Remember, our variational distribution is approximating the true posterior .

qη

qϕ(z|x) pθ(z|x)

35

Gaussian Variational Families and their Reparametrized Form

Gaussian with Diagonal Covariance

Gaussian with General Covariance: For lower triangular with positive diagonal,

Even a Gaussian in this dimension will have parameters.

Gaussian with a Factor Covariance Structure (Ong et al., 2017): For ,

q(⋅ |x) ∼ N (μ, diag(σ))

Z = tϕ(ϵ) = μ + σ ⊙ ϵ, ϵ ∼ N (0, Id).

L

O(d2)

q(⋅ |x) ∼ N (μ, Σ), Σ = LL⊤,

Z = tϕ(ϵ) = μ + Lϵ, ϵ ∼ N (0, Id).

B ∈ R
d×r

q(⋅ |x) ∼ N (μ, Σ), Σ = diag(d) + BB⊤,

Z = tϕ = μ + Bϵ1 + d ⊙ ϵ2, ϵ1 ∼ N (0, Ir), ϵ2 ∼ N (0, Id).

36

https://www.tandfonline.com/doi/full/10.1080/10618600.2017.1390472

Flow Variational Families

In principle, you can use any reparametrizable distribution as a variational family.

Naturally, Normalizing Flows fall into that category.

Flows are most useful for amortized inference (more on that tomorrow).

X = T (Z ; ϕ)

37

Structured Variational Families

Depending on the graphical structure of the model, it may make sense to create .

This is a bit outside the scope of this course, but one nice approach is

Gaussian Variational Families with Sparse Precision Matrices (Tan & Nott, 2017)

where has a certain sparsity structure matching the conditional independence structure of the target.

There are some recent approaches that take into account graphical structure automatically using probabalistic
programming languages:

Automatic Structured Variational Inference (Ambrogioni et al., 2021)

"the variational program has the same control-flow structure, dependence graph, and time complexity as the original
model. Local transformations of this kind may be implemented by effect handlers (Plotkin and Pretnar, 2009), a
mechanism supported in multiple recent probabilistic programming frameworks" - ASVI Paper

Z = tϕ(ϵ) = μ + L−1ϵ.

L

38

https://link.springer.com/article/10.1007/s11222-017-9729-7
http://proceedings.mlr.press/v130/ambrogioni21a.html

Sticking the Landing

In practice, always want to use a reparametrization gradient in the stochastic backpropagation.

In fact, we can get the variance even lower!

Interesting trick discovered by Tan & Nott (2018), generalized by Roeder et al. (2017).

We have that (note the connection to ZV-CV), and so we can remove the
corresponding term from the estimator of

If , an estimator of the path derivative (term inside leftmost expectation) will have zero
variance.

They call this sticking the landing as the stochastic gradient will have lower variance when the optimizer is
"landing" near an optima.

This is tricky to do with automatic differentiation, but Pyro implements this all for us in the background.

Eq[∇ϕ log qϕ(Z)] = 0

∇ϕ = ∇ϕE[log p(x,Z) − log qϕ(Z)]

= Eqϕ [(∇z log p(Z,x) − ∇z log qϕ(Z))Jt(ϵ,ϕ)] − Eqϕ∇ϕ log qϕ(z)
.

qϕ(z|x) = p(z|x)

39

https://link.springer.com/article/10.1007/s11222-017-9729-7
https://arxiv.org/pdf/1703.09194.pdf

Sticking the Landing...

Figure from Roeder et al., (2017), Sticking the Landing: Simple, Lower-Variance Gradient Estimators for Variational Inference.

40

https://arxiv.org/pdf/1703.09194.pdf

An Implementation

Let's have a quick look at an implementation of fully Bayesian VI using a Gaussian with Factor Covariance
Structure...

class VAFC:
 def __init__(self, p, r_cov = 1, logp = [], gr_logp = [], eps=1e-8):
 self.r_cov, self.p = r_cov, p
 self.logp, self.gr_logp = logp, gr_logp
 self.eps = eps

 self.prm = {'mu':t.zeros(p, requires_grad=True, dtype = t.float64),
 'B': t.zeros((p,r_cov), requires_grad=True, dtype = t.float64),
 'sig_th': t.tensor(0.25*t.ones(p, dtype = t.float64),
 requires_grad=True)
 }

 def t(self, s1,s2):
 # reparametrized form
 Z = (self.prm['mu'] + self.prm['B'] @ s1 + self.prm['sig_th'] * s2)
 return Z

41

Implementation Continued

 def sample(self, est_ELBO=False):
 s1 = torch.randn(self.r_cov, dtype = t.float64)
 s2 = torch.randn(self.p, dtype = t.float64)

 theta = self.t(s1,s2)

 if est_ELBO:
 self.lastELBO = self.ELBO(Z)

 return Z

 def ELBO(self, Z):
 with torch.no_grad():
 DIST = dst.LowRankMultivariateNormal(loc = self.prm["mu"],
 cov_factor = self.prm['B'],
 cov_diag = self.prm["sig_th"]**2)

 ELBO = self.logp(Z) - DIST.log_prob(Z)

 return ELBO

42

 def train_step(self, n_BZ = 100, save = True):
 Z = self.sample(est_ELBO=True)

 gr_logp = t.tensor(self.gr_logp(Z).reshape(-1,1))

 with t.no_grad():
 # self.pr_Z computes the precision matrix efficiently
 gr_entropy = -self.pr_Z() @ (Z - self.prm['mu']).reshape(-1,1)

 r = gr_logp - gr_entropy

 Z.backward(-r.flatten()) # most efficient way

 self.optim.step()

 def full_train(self, num_steps, show = int(500), N=1):
 self.optim = optim.Adadelta(self.prm.values(), rho=0.8, eps=self.eps)
 mn_ELBO = 0

 for i in range(1,num_steps+1):
 self.optim.zero_grad()
 self.train_step()
 mn_ELBO += self.lastELBO
 if i%show == 0 and i>0:
 print(i, float(mn_ELBO/show))
 mn_ELBO = 0

43

Alternatives to the ELBO Loss

Generally, such methods are referred to as "Variational Objectives", and in the general setting aim to make
the ELBO bound "tighter".

Importance Weighted Bound

Alternate (and tighter) lower bound on the likelihood

Recovers ELBO loss for .

Reduces to Renyi-Divergence in the "fully-Bayesian" case.

State-of-the-Art is to employ Doubly Reparametrized Gradient estimators (Tucker et al., 2018) which
are an unbiased analogue of the "Sticking the Landing" gradient estimators for alternate objectives.

Jacknife Variational Objective: Introduces further debiasing via jacknife arguments.

Thermodynamic Variational Objective: Links VI and Thermodynamic Integration identities to obtain tighter
bounds.

Lk(x) = EZ1,Z2,…Zk∼q(z|x) [log(
k

∑
i=1

)]
1

k

p(Zi,x)

q(Zi|x)

k = 1

44

https://papers.nips.cc/paper/2019/file/618faa1728eb2ef6e3733645273ab145-Paper.pdf
https://arxiv.org/pdf/1810.04152.pdf
https://openreview.net/pdf?id=HyZoi-WRb
https://arxiv.org/abs/1907.00031

An Aside: Mean Field Variational Inference

Beyond this slide, we will not focus on Mean Field Variational Inference, but it is nice to know about it as you
may come across it in the literature.

Here, the objective is to obtain
where the admissible family is all distributions that
factorize as

i.e., individual elements (or blocks of elements) are independent.

Advantages: often extremely fast, it is neat that you do not need to specify a family for , no gradients needed,
posesses a certain mathematical elegance.

Disadvantages: limited to certain models, not a very flexible family.

Requires extremely long and often tedious derivations of the update rules, which are different for every
model.

By contrast, stochastic gradient methods are now dominating the literature, as they are more black-box and
generally work well so long as one uses reparametrization gradients.

arg minq∈Q KL(q||p) Q

q(x) =∏
k

qk(xk)

q

45

Up Next

So, that was the crash course on Directed Graphical Models and Variational Learning.

As you may have noticed, implementing these things are not simple, and usually code needs to be changed
model to model.

We will take a look at Pyro which makes both specifying models and variational inference a lot easier.

We will learn what a variational autoencoder is.

We will learn about amortized inference.

46

