
Part IV: Pyro Fundamentals, Amortized
Inference, and Variational Autoencoders

Robert Salomone

AMSI Winter School, 2021

2

Amortized Inference

Previously, you have seen that given some data , we can fit a variational approximation of the latent
posterior .

This is useful for training models via (approximate) maximum likelihood, or just flat out fitting an approximate
distribution to some target distribution of interest.

However, there is one weakness, for new data, we have to go and train everything all over again to get .

However, we can be smart in the case where every observation has their own local latent variables.

X
Z|X

qϕ

3

Global Latent Variables

The same latents generate all the data (e.g., is
Bayesian parameters).

Local Latent Variables

Every observation has its own latent vector (e.g.,
Latent Representation).

Global vs. Local Latents

Z

4

Amortized Inference: In a Nutshell

Key Idea

For with local latent variables, with the techniques we have learned so far, we would need to fit
individual variational approximations .

Amortized Inference is the approach that tries directly learn the mapping that will work for
any (including ones from outside the dataset that you may introduce later).

This, in some sense, exploits the conditional independence structure of the model.

We introduce an inference network (sometimes called a recognition model), .

For a variational family , instead of optimizing being the actual variational parameters that parametrize ,
we will train some function that outputs the variational parameters.

Denoting , the amortized variational approximation is (here, denotes any single observation).

xk ∈ x
q(zk|xk) ≈ p(zk|xk)

x ↦ p(z|x)
xk

gϕ

qη η q

gϕ

q(⋅ ; η) x

(Z|X = x) ∼ q(⋅ ; gϕ(x)).

5

Amortized Inference (Continued)

Of course, will be a neural net. Now, our variational approximation really does have the form if
denotes a single observation.

Data goes in, parameters of a variational approximation come out.

We train by optimizing over as we did earlier (e.g., maximizing the ELBO loss), but now we have a neural
net in there.

The main advantage of amortizing our variational inference: We train once, and then can infer an
approximation of the distribution of for some new without retraining.

g q(z|x) x

gϕ ϕ

gϕ
Z|X Z

6

Neural Nets all the way down...

We can use neural networks with latent variables to obtain a very flexible and/or a model with
meaningful .

We can use a neural network to amortize approximate posterior inference as
where is a neural network mapping to the parameters of a variational distribution.

The variational parameters themselves output by the inference network may themselves be the
parameters of another neural network (or even sequence thereof!) that is used to define a flexible
distribution via normalizing flows.

Too many neural nets? That's not for me to say.

pθ(x)
pθ(z|x)

q(z|x) ∼ Dist(η(x)) ≈ p(z|x)
η x

7

Back to Bayes-ics

At this point, you can see why we wouldn't want to be fully Bayesian. If we have a very high-dimensional
(e.g., Deep Bernoulli model with say parameters), then performing effective variational inference those
latents would introduce additional challenges without much benefit.

Most Importantly: It would probably make your posterior inferences much worse on the latent variables
you actually really care about, which may very low dimensional.

θ

106

8

Variational Autoencoders

9

Next, we will introduce a state-of-the-art
probabalistic model for dimensionality reduction.
Let denote the dimensionality of the latent
space.

Now is, of course, a sufficiently flexible neural
network.

Generally, we will have that .

The distribution of can be whatever you want
it to be, so long as it matches your data of
interest (discrete, continuous, etc.).

Bayesian Manifold Learning

m

Zk ∼ N (0, Im), , k = 1, … ,N .

Xk|Zk ∼ind Dist(⋅ ; gθ(Z)), k = 1, … ,N .

gθ

dim(Z) ≪ dim(X)

X

10

Yes...that is the model.

Let's look at what the above model is saying:

Every observation relies on some lower dimensional latent vector (manifold hypothesis).

For an observation , the posterior distribution of gives a probability distribution of its position on
the underlying (lower-dimensional) manifold.

The latent vector is marginally a standard multivariate normal.

This means generation is easy (assuming we fit the model): we can sample first from the manifold (which
is disentangled) and then conditional on the manifold position.

Enforcing our "prior" to be of this form is equivalent to saying "train the model so that the marginal
distribution over the data for is independent and standard normal (i.e., find a disentangled, lower-
dimensional representation of the generating distribution).

Note also that my "Deep Bernoulli" model from earlier fits the above description. We used latents to create a
flexible multivariate family, but posterior inference over also has above manifold interpretation.

X Z|X

Z

Z|X

11

Solving the Problem using Amortized Inference

Now, train that model with amortized inference.

That model is a VAE.

12

Traditional Autoencoders

An autoencoder is a classic-ish neural network architecture for dimensionality reduction / manifold learning.

Can think about it as two neural networks trained together and .The
bottleneck in the centre (two-nodes above), is called the learned representation.

The VAE model does this probabilistically, where the (amortized) variational approximation plays the role of
"encoder" , and the part of model takes the role of a "decoder".

People often insist on explaining VAE only with the above, but I think this hides what is really going on
(variational learning, amortized inference, latent variables), which is important to understand extensions.

gencoder : X → Z gdecoder : Z → X

z

pθ(x|z)

13

VAE In a Nutshell

So, the VAE is a model that allows for all of the following:

Posterior Inference on : You give me an , I give you the distribution on . Thus, we get a
distribution over where the sample lives in (disentangled) latent space.

Forward Simulation: Draw (manifold position) and return

Amortized Inference: I can compute (approximately) without redoing variational inference! This
can be viewed as "encoding" probabilistically.

Why is this important? After training the model once, I can not extract a latent representation for new data
without any issues.

Also, by design, the latent space is disentangled. Our model posits that the population our data comes can be
explained by a latent space where features are orthogonal (independent).

Variational: it is trained with variational learning / Autoencoder: the end-product resembles a (probabalistic)
autoencoder

Main benefit: Disentanglement, the "prior" on enforces this.

Z X Z|X

Z ∼ N (0, I) X ∼ Dist(gθ(Z))

Z|X
X

N (0, I) Z

14

References

As mentioned, the approach we are discussing here was simultaneously (!) proposed by two papers

1. Rezende, D. et al., 2014, Stochastic Backpropagation and Approximate Inference in Deep Generative
Models

2. Kingma, D. & Welling M., 2014, Auto-Encoding Variational Bayes

15

http://proceedings.mlr.press/v32/rezende14.html
https://arxiv.org/abs/1312.6114

Extensions of VAE

Better Disentanglement via Different Loss Functions: e.g., Beta-VAE and FactorVAE. Remember, we aren't
maximizing the likelihood, only a lower bound on it! So if disentanglement is the main goal, improvements can
be made in that direction.

Neural Statistician (Learns summary statistics from a collection of individual datasets) / Neural Processes:
Generalization of Gaussian Processes (distributions over functions).

Conditional VAE / Neural Process (of course!)

Figure from Garnelo et al (2018)., Neural Processes, International Conference of Machine Learning (ICML) 2018.

16

https://openreview.net/pdf?id=Sy2fzU9gl
https://arxiv.org/pdf/1802.05983.pdf
https://arxiv.org/pdf/1606.02185.pdf
https://arxiv.org/pdf/1807.01622.pdf

Exact Likelihood Gradients

See the recent work Unbiased Gradient Estimation for Variational Auto-Encoders using Coupled Markov
Chains by Ruiz et al. (June 2021).

Can train a VAE via actual maximum likelihood (not lower bound). Uses an unbiased MCMC approach.

Again, being "semi-Bayesian" hopefully keeps the posterior dimension manageable for the MCMC!

17

https://arxiv.org/abs/2010.01845

Conditional VAE

At this point, we can see if I have achieved my goal of having this picture make some sense to you...

18

Pyro Fundamentals

19

First things first....

Pyro is a probabalistic programming language.

Then again, so is Stan, Turing, PyMC, etc.

Pyro can do all the things one can do in the above, but its intended purpose is deep probabalistic modelling.
Pyro allows for very flexible models:

It is designed to allow us to have neural nets everywhere wherever we desire.
It is designed for inference methods that are highly scalable in and in - naturally it thus is focussed on
the use of Variational inference.
Flow-based Distributions can be incorporated into models (as well as used for variational inference).

Pyro is universal: models can return other models, recursion is allowed, as is things like random number of
variables, random models, you can be Bayesian about whatever you like, you can go as deep as you like, etc.

"It is worth emphasizing that this is one reason why Pyro is built on top of PyTorch: dynamic computational graphs
are an important ingredient in allowing for universal models that can benefit from GPU-accelerated tensor math."

d n

20

More about Pyro.

It is actually quite ridiculous what it is capable of, but most people will never use such features.

However, those features include a very nice variational inference engine with stochastic backpropagation that
will allow us to play around a little (and implement VAEs reasonably painlessly)

For more details, see the initial Pyro paper.

My goal isn't to make you an expert in Pyro, but to give you the tools to understand how to follow its
tutorials and play around once you become more familiar with PyTorch.

21

https://arxiv.org/pdf/1810.09538.pdf

Pyro

model: this is a stochastic function that specifies
guide: used to specify

param: this is something that will be optimized over in the objective

param in model: elements of
param in guide: elements of

More generally, in Pyro, a guide is anything that approximates a posterior distribution.

We will only be looking at variational approximations.
However, one can also implement particle filters (importance sampling) or other inference approaches
(e.g., Stein Variational Gradient Descent).

pθ(x|z)
qϕ(z| x)

θ
ϕ

22

Brief Pyro Overview

Figure from the original Pyro paper, showcasing the structure of a model and its inference.

23

A Brief Mention Regarding NumPyro

This is a second backend for Pyro built on Jax. This is useful as it allows very fast compilation for HMC.

NumPyro even has Subsampling MCMC (HMC variant)!

It also has some nice features, see here.

Syntax quite similar to standard Pyro but there are differences.

We will focus on standard Pyro as it is built on PyTorch which we have seen, and there are more features
for deep probabalistic programming there.

Both are very good, but

NumPyro is what you should use if you want to do a lot of MCMC / Bayesian Statistics. There are also a
lot more resources for NumPyro for this purpose. On the other hand, there are no flows, and it
doesn't have certain features used more for AI.
Pyro is what you should use if you want to do deep probabalistic models or want to use variational
learning mostly.

This may change over time, Pyro Developers are working on a framework pyro.api that can dispatch a model
to either backend.

24

http://num.pyro.ai/en/latest/examples/covtype.html
http://num.pyro.ai/en/latest/index.html#introductory-tutorials

Pyro Fundamentals

The remainder of this lecture is demonstrated in this Jupyter Notebook which doubles as a tutorial workbook.

25

http://robsalomone.com/wp-content/uploads/2021/07/Tutorial2.html

